모바일 오유 바로가기
http://m.todayhumor.co.kr
분류 게시판
베스트
  • 베스트오브베스트
  • 베스트
  • 오늘의베스트
  • 유머
  • 유머자료
  • 유머글
  • 이야기
  • 자유
  • 고민
  • 연애
  • 결혼생활
  • 좋은글
  • 자랑
  • 공포
  • 멘붕
  • 사이다
  • 군대
  • 밀리터리
  • 미스터리
  • 술한잔
  • 오늘있잖아요
  • 투표인증
  • 새해
  • 이슈
  • 시사
  • 시사아카이브
  • 사회면
  • 사건사고
  • 생활
  • 패션
  • 패션착샷
  • 아동패션착샷
  • 뷰티
  • 인테리어
  • DIY
  • 요리
  • 커피&차
  • 육아
  • 법률
  • 동물
  • 지식
  • 취업정보
  • 식물
  • 다이어트
  • 의료
  • 영어
  • 맛집
  • 추천사이트
  • 해외직구
  • 취미
  • 사진
  • 사진강좌
  • 카메라
  • 만화
  • 애니메이션
  • 포니
  • 자전거
  • 자동차
  • 여행
  • 바이크
  • 민물낚시
  • 바다낚시
  • 장난감
  • 그림판
  • 학술
  • 경제
  • 역사
  • 예술
  • 과학
  • 철학
  • 심리학
  • 방송연예
  • 연예
  • 음악
  • 음악찾기
  • 악기
  • 음향기기
  • 영화
  • 다큐멘터리
  • 국내드라마
  • 해외드라마
  • 예능
  • 팟케스트
  • 방송프로그램
  • 무한도전
  • 더지니어스
  • 개그콘서트
  • 런닝맨
  • 나가수
  • 디지털
  • 컴퓨터
  • 프로그래머
  • IT
  • 안티바이러스
  • 애플
  • 안드로이드
  • 스마트폰
  • 윈도우폰
  • 심비안
  • 스포츠
  • 스포츠
  • 축구
  • 야구
  • 농구
  • 바둑
  • 야구팀
  • 삼성
  • 두산
  • NC
  • 넥센
  • 한화
  • SK
  • 기아
  • 롯데
  • LG
  • KT
  • 메이저리그
  • 일본프로야구리그
  • 게임1
  • 플래시게임
  • 게임토론방
  • 엑스박스
  • 플레이스테이션
  • 닌텐도
  • 모바일게임
  • 게임2
  • 던전앤파이터
  • 마비노기
  • 마비노기영웅전
  • 하스스톤
  • 히어로즈오브더스톰
  • gta5
  • 디아블로
  • 디아블로2
  • 피파온라인2
  • 피파온라인3
  • 워크래프트
  • 월드오브워크래프트
  • 밀리언아서
  • 월드오브탱크
  • 블레이드앤소울
  • 검은사막
  • 스타크래프트
  • 스타크래프트2
  • 베틀필드3
  • 마인크래프트
  • 데이즈
  • 문명
  • 서든어택
  • 테라
  • 아이온
  • 심시티5
  • 프리스타일풋볼
  • 스페셜포스
  • 사이퍼즈
  • 도타2
  • 메이플스토리1
  • 메이플스토리2
  • 오버워치
  • 오버워치그룹모집
  • 포켓몬고
  • 파이널판타지14
  • 배틀그라운드
  • 기타
  • 종교
  • 단어장
  • 자료창고
  • 운영
  • 공지사항
  • 오유운영
  • 게시판신청
  • 보류
  • 임시게시판
  • 메르스
  • 세월호
  • 원전사고
  • 2016리오올림픽
  • 2018평창올림픽
  • 코로나19
  • 2020도쿄올림픽
  • 게시판찾기
  • 게시물ID : science_62917
    작성자 : 등껍질
    추천 : 1
    조회수 : 1823
    IP : 162.158.***.29
    댓글 : 18개
    등록시간 : 2017/03/26 16:30:35
    http://todayhumor.com/?science_62917 모바일
    고등수학에서의 이해란 무엇인가? +암기
    옵션
    • 창작글
    어디까지를 이해로 봐야 하고 어디까지를 암기로 봐야 할까요? 
    고등수학 기준으로 생각하겠습니다.
    이해가 무엇인지 알아보기 위해 예시를 들어보겠습니다.
    Ex.1)
    반지름 r의 구의 부피가 

    V=4/3 πr³

    임을 이해했다. 암기했다.
    여기서 이해했다는 것은, 무엇을 이해했다는 거고, 암기했다는 것은 무엇을 암기했다는 것일까요?
    좀 더 구체적으로 적어봅시다.
    구의 부피에 대해 암기했다는 것은,
    "구의 반지름이 r인 경우에 구의 부피는 'V=4/3 πr³'이 된다."는 것이고,
    이해했다는 것은, 
    "구의 반지름이 r인 경우에 구의 부피는 'V=4/3 πr³'이 된다." 가 되는 이유를 알고 있다는 것이죠.
    고등수학 기준으로 그 이유를 설명해보겠습니다.
    (구분구적법 배우기 전)
    초등, 중등과정? 에서 원기둥의 2/3의 부피가 구의 부피임을 이용해서 구의 부피를 구했습니다. 
    또한, 이를 보여주기 위해, 구에 물을 채우고, 이를 원기둥에 옮겨 넣어서 2/3임을 보여줌으로써, 직관적으로 보여줬습니다.
    이는 적절한 이유겠죠? 또한, 이는 이해한 것입니다.
    (구분구적법을 배움)
    구를 수많은 원기둥으로 나눈 이후에, 극한을 이용해 구의 부피를 구합니다.
    이 또한 적절한 이유겠죠? 이것도 이해한 것입니다.
    Ex.2)
    삼각함수의 덧셈정리가
    sin(α±β)=sinαcosβ±cosαsinβ
    cos(α±β)=cosαcosβ∓sinαsinβ
    임을 이해했다(?) 암기했다.
    이또한 구체적으로 들여다봅시다.
    삼각함수의 덧셈정리를 암기했다는 것은
    sin(α+β)=sinαcosβ+cosαsinβ…①
    sin(α-β)=sinαcosβ-cosαsinβ…②
    cos(α+β)=cosαcosβ-sinαsinβ…③        
    cos(α-β)=cosαcosβ+sinαsinβ…④
    이 수식들을 하나하나 외웠다는 것입니다.
    그럼 여기에서 이 수식은 이해했다고 말할 수 있을까요?
    수식이 어떻게 나오게 됬는지는 말할 수 있습니다.
    이것도 고등학교 기준으로 그 이유를 설명해보겠습니다.
    (내적 배우기 전)
    원을 이용해 cos(α-β)를 유도합니다. (자세한 것은 고등교과 참조) 그 후 값을 조절해서 4개의 식을 유도할 수 있습니다.
    수식이 이렇게 나옴을 이해한 것입니다.
    (내적 배운 후)
    내적으로  cos(α-β) 를 유도합니다.(이건 교과서에 실려있지 않은 걸로 알고 있습니다) 위와 동일.
    이것도 수식이 이렇게 나옴을 이해한 것입니다.
    Ex.3) 
    정의(Definition)는 어떻게 봐야 할까요? 원의 부피를 암기, 이해로 나눴고, 어떤 정리를 암기, 이해로 나눴습니다.
    정의는 암기 이해로 나눠질 수 있을까요? 정의는 그게 정의이니 외워야만 할까요?

    정적분의 정의를 예로 들어보겠습니다.
    fsdd.jpg
    이 관계식, 즉 등호 관계는 정의입니다. 이를 이해했다. 암기했다. 로 나눌 수 있겠는데요.
    우선 암기했다고 한다면, 위 수식 자체를 외운 것이겠죠.
    이해는 어떤 것일까요?
    고등학생이 우측의 식을 이해하려고 합니다. 
    f(x)라는 함수를 구간 [a,b]에서, 밑변을 Δx 크기로 만들고, 높이는 f(xk)로 이루어진 직사각형들을 n개 만든다. 그 n을 무한으로 보내버리면, 직사각형이 아주 작아져서, a에서 b까지의 함수의 넓이를 구할 수 있어진다.
    라고 이해를 합니다.
    두 번째로, 좌측의 수식은 처음 보는 수식입니다. 여기도 그냥 암기와 이해를 할 수도 있습니다.
    암기는 수식 자체를 외워버립니다. 저렇게 표현된다는 것을요.
    이해는 어떨까요?
    고등학생 왈:Integral 이라는 수식은 sum의 앞글자인 s를 길게 늘인 것이구나. 그래서 저렇게 생겨먹었군. 또한 그 구간은 s를 길게 늘인 것의 아래와 위에 표시하는구나. f(x)는 함수를 뜻하고, dx는 미분에서 본 거랑 비슷하네? 아주 작은 x를 표현하는 것인가 보네.
    아하 그러면 f(x)에 dx를 곱한 것, 즉 [f(x)dx=직사각형]을 sum 하라는 거구나. a에서 b까지.
    로 이해를 할 수 있습니다

    다 이해를 할 수 있습니다.

    //
    //
    여기서부터 제 견해를 피력해 보겠습니다.
    과연 다 이해일까요??
    Ex.1),Ex.2),Ex.3)은 이해라고 볼 수 있을까요? 제가 이해라고 썼다 해서 이해가 되는 것은 아닙니다.

    Ex.3)은 이해인가요? 정의에 나타난 수식들에 의미를 만들어 낸 것은 아닐까요? (의미부여)

    Ex.2)는 이해인가요? 뭘 이해한 것이죠? 삼각함수의 덧셈정리가 저렇게 나오는 것이다. 라는 것을 이해한 것인가요?
    정리가 나오는 것을 이해했다? 

    Ex.1)은 제 견해로는 이해라고 봅니다.

    여기서 Ex.1,2,3)에서 이해의 공통점은 있습니다.
    바로 (자신포함) 남들을 설득할 수 있게 표현하는 것입니다.
    중요한 것은 설득 가능하다는 것입니다.
    설득당하지 않으셨다면, 이해를 했다고 말할수는 없습니다.
    제 생각에 이해라는 것은, 나를 설득 가능하고, 또 이를 남에게 설득 가능하게 설명할 수 있는 표현이라고 봅니다.
    저는 이해를 이렇게 정의했습니다.
    사실 이해에 대한 정의가 사람마다 다르다 보니, 이야기가 진척되지 않는 거 같습니다. 우선 먼저 확실하게 정의를 내려야 한다고 봅니다.
    이해는 뭐라고 생각하시나요?
    →(사실 이 글의 메인 주제입니다. ㅠㅠ)
    //
    //
    글은 여기까지입니다. 아랫부분은 +α입니다.



    「읽지 않으셔도 괜찮습니다. 생각해 볼 만한 이야깃거리입니다.

    Ex.1-1) 고등교과에서 이해 가능한가?, 또한 잘못된 이해가 나올수도 있지 않을까?
    반지름 r의 구의 겉넓이는 

     S=4πr²

    임을 혹시 고등학교과정에서 이해하셨습니까? 암기하셨습니까? 이해하셨다면 어떻게 이해를 하셨습니까?
    고등교과 내에서 이해를 시킬 수 있습니까? 즉 설득을 시킬 수 있습니까?

    Ex.2-1) 암기와 이해의 구분은 어디에서?
    덧셈정리에서 합차를 곱으로, 곱을 합차로 만드는 공식이 있습니다.
    식이 8개 나옵니다.
    이를 외우는 방법이 있습니다.
    1. 그냥 외운다.
    이것은 암기한 것이죠.
    //
    2. 
    신푸신은 두신코
    신마신은 두코신
    ..
    ..
    로 올싼타크로스(1,2,3,4사분면에서 삼각함수의 부호)와 같이 외우는 방법이 있습니다.
    이는 이해한 것입니까?
    //
    3.
    sin(α+β)=sinαcosβ+cosαsinβ…①
    sin(α-β)=sinαcosβ-cosαsinβ…②
    cos(α+β)=cosαcosβ-sinαsinβ…③        
    cos(α-β)=cosαcosβ+sinαsinβ…④
    에서 ①+②를 통해 sinαcosβ를 유도 가능 즉 곱을 합차로 바꾸는 것을 유도 가능합니다. α+β=A ,α-β=B를 통해 합차를 곱으로 바꿀 수 있습니다.
    이런 방법을 통해 외우는 것은 이해한 것입니까?

    Ex.3-1) 현재 고등학생에게 주는 질문
    정적분의 정의는 
    fsdd.jpg
    입니다.

    근데 이 계산 값이 왜 F(b)-F(a)일까요?
    (고등학교 설명기준)
    미분의 반대는 부정적분입니다. 정적분은 넓이를 구하기 위함입니다. 즉 정적분은 상수입니다. 미분하면 빵이 돼버립니다.(구간이 상수일 때)
    근데, 정적분의 넓이를 구하는데, f(x)의 부정적분인 F(x)에 함숫값 b a를 대입한 값을 뺀 값이 어떻게 해서 정적분의 값이 될 수 있을까요?」


    여러 의견 부탁드려요!
    자신의 의견을 피력해 주시길 바랍니다!!
    등껍질의 꼬릿말입니다
    여러 의견 부탁드립니다.
    여러 의견 부탁드려요!
    옳고 그름이 아닌, 자신만의 의견을 피력해 주시길 바랍니다!!

    이 게시물을 추천한 분들의 목록입니다.
    [1] 2017/03/26 17:34:48  223.32.***.206  대구불로동  133171
    푸르딩딩:추천수 3이상 댓글은 배경색이 바뀝니다.
    (단,비공감수가 추천수의 1/3 초과시 해당없음)

    죄송합니다. 댓글 작성은 회원만 가능합니다.

    번호 제 목 이름 날짜 조회 추천
    68873
    식기들 끓는물 소독 & 다시 흐르는 물에 씻기 [2] 눙물이눙물이 24/11/22 12:29 631 2
    68872
    질문? 대기권 재진입 내열타일 실험할 때 산소도 공급하나요? [3] Young.K 24/11/21 15:31 422 2
    68871
    현직 물리학 교수가 올린 수학 잘하는 법 [3] 제임스Bond 24/11/20 18:04 704 1
    68870
    아인슈타인도 예측하지 못했던 천체현상의 발견 [3] ㅗㅠㅑ 24/11/11 16:43 929 3
    68869
    수십1년간 묵혀졌던 궁금증이 ChatGPT를 통해 해소 됐습니다. [2] ㅗㅠㅑ 24/11/10 22:56 1072 3
    68868
    0.9999.... = 1 그럼 ....999999999 는??? [4] Young.K 24/11/08 14:47 902 3
    68866
    이 덩치큰녀석 언제 다 올렸지 신기하다 [3] dogcat 24/11/05 16:11 973 2
    68865
    우리가 사는 세상이 가상현실이라는 증거 [1] ㅗㅠㅑ 24/11/05 13:26 829 3
    68864
    대기 중 CO2 획기적 제거 신물질 'COF-999' 개발 "눈길" [5] 펌글 우가가 24/11/04 00:01 976 3
    68863
    김범준 교수님이 했던 기억에 남는말, 물질이 빛보다 빠를 수 없는 이유 [2] Oh_My!_Girl 24/10/29 16:57 1140 2
    68861
    귀신(?)에 대한 공포는 사람이 아닌 다른 동물들도 마찬가지인걸까요? [2] Oh_My!_Girl 24/10/28 11:29 1035 2
    68856
    물리학에서 질량은 우주어디에서나 변함없이 같다 .특수상대성이론은 [4] dogcat 24/10/21 20:41 1092 0
    68855
    우주의 크기는 대략 140억광년이다. [6] dogcat 24/10/21 20:03 1372 2
    68854
    블랙홀과 열역학 [4] 달음 24/10/17 00:24 1412 0
    68853
    음식무게와 살찌는 체중증가의 관계? [6] 리버풀7 24/10/16 20:57 1188 0
    68852
    [도움] 수학문제 풀이가능하신분 ! [5] 유전자몰빵 24/10/09 17:06 1309 0
    68851
    [잡설] 양자얽힘과 초공간과 암흑물질과. [2] Young.K 24/10/01 22:39 1438 0
    68850
    음악 자주 듣는 분들 과학적 꿀팁 [2] 사나이직각 24/09/28 22:49 1632 2
    68848
    등가원리가 맞다면, 가속도 운동도 시공간휨을 발생시키는가? [2] 본인삭제금지 arevo 24/09/22 01:00 1604 1
    68847
    폴라리스 던. 극궤도 유인 탐사 1400km 돌파! +EVA [1] 펌글 Young.K 24/09/11 17:45 1570 0
    68846
    무한히 작은 확률을 31%까지 끌어올리는 방법 [2] 펌글 우가가 24/09/04 23:14 2213 5
    68845
    [소식] 스타라이너 스피커에서 나는 소리가 해결되었다고 합니다. [2] Young.K 24/09/02 11:04 1907 1
    68844
    [펌] 시카노코노코노코 Young.K 24/08/31 17:16 1728 1
    68843
    프리 노벨상 인체물리학 24/08/30 10:39 1731 0
    68842
    안녕하세요 오랜만에 질문드리네요! 삼차함수 미분문제 풀어주실분 계실까요? [2] 창작글본인삭제금지 난선생너학생 24/08/29 14:39 1701 1
    68841
    [펌] 팰컨9 B1062 부스터가 착륙에 실패하여 파괴되었습니다(추가3) [2] Young.K 24/08/29 00:52 1891 1
    68840
    [펌] 스타라이너 승무원들은 Crew-9으로 복귀합니다. [4] Young.K 24/08/25 04:07 2091 1
    68839
    비행기가 뜨는 양력 이론 쉽게 이해 하기. [11] 나비의아이 24/08/14 06:50 2424 3
    68838
    슈퍼컴퓨터로 지진운의 과학적 입증? [6] 나비의아이 24/08/14 04:52 2272 0
    68837
    [펌] 보잉 스타라이너 CST-100 승무원 대체 귀환 고려 중. [6] 펌글 Young.K 24/08/08 18:33 2206 1
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [다음10개▶]
    단축키 운영진에게 바란다(삭제요청/제안) 운영게 게시판신청 자료창고 보류 개인정보취급방침 청소년보호정책 모바일홈