모바일 오유 바로가기
http://m.todayhumor.co.kr
분류 게시판
베스트
  • 베스트오브베스트
  • 베스트
  • 오늘의베스트
  • 유머
  • 유머자료
  • 유머글
  • 이야기
  • 자유
  • 고민
  • 연애
  • 결혼생활
  • 좋은글
  • 자랑
  • 공포
  • 멘붕
  • 사이다
  • 군대
  • 밀리터리
  • 미스터리
  • 술한잔
  • 오늘있잖아요
  • 투표인증
  • 새해
  • 이슈
  • 시사
  • 시사아카이브
  • 사회면
  • 사건사고
  • 생활
  • 패션
  • 패션착샷
  • 아동패션착샷
  • 뷰티
  • 인테리어
  • DIY
  • 요리
  • 커피&차
  • 육아
  • 법률
  • 동물
  • 지식
  • 취업정보
  • 식물
  • 다이어트
  • 의료
  • 영어
  • 맛집
  • 추천사이트
  • 해외직구
  • 취미
  • 사진
  • 사진강좌
  • 카메라
  • 만화
  • 애니메이션
  • 포니
  • 자전거
  • 자동차
  • 여행
  • 바이크
  • 민물낚시
  • 바다낚시
  • 장난감
  • 그림판
  • 학술
  • 경제
  • 역사
  • 예술
  • 과학
  • 철학
  • 심리학
  • 방송연예
  • 연예
  • 음악
  • 음악찾기
  • 악기
  • 음향기기
  • 영화
  • 다큐멘터리
  • 국내드라마
  • 해외드라마
  • 예능
  • 팟케스트
  • 방송프로그램
  • 무한도전
  • 더지니어스
  • 개그콘서트
  • 런닝맨
  • 나가수
  • 디지털
  • 컴퓨터
  • 프로그래머
  • IT
  • 안티바이러스
  • 애플
  • 안드로이드
  • 스마트폰
  • 윈도우폰
  • 심비안
  • 스포츠
  • 스포츠
  • 축구
  • 야구
  • 농구
  • 바둑
  • 야구팀
  • 삼성
  • 두산
  • NC
  • 넥센
  • 한화
  • SK
  • 기아
  • 롯데
  • LG
  • KT
  • 메이저리그
  • 일본프로야구리그
  • 게임1
  • 플래시게임
  • 게임토론방
  • 엑스박스
  • 플레이스테이션
  • 닌텐도
  • 모바일게임
  • 게임2
  • 던전앤파이터
  • 마비노기
  • 마비노기영웅전
  • 하스스톤
  • 히어로즈오브더스톰
  • gta5
  • 디아블로
  • 디아블로2
  • 피파온라인2
  • 피파온라인3
  • 워크래프트
  • 월드오브워크래프트
  • 밀리언아서
  • 월드오브탱크
  • 블레이드앤소울
  • 검은사막
  • 스타크래프트
  • 스타크래프트2
  • 베틀필드3
  • 마인크래프트
  • 데이즈
  • 문명
  • 서든어택
  • 테라
  • 아이온
  • 심시티5
  • 프리스타일풋볼
  • 스페셜포스
  • 사이퍼즈
  • 도타2
  • 메이플스토리1
  • 메이플스토리2
  • 오버워치
  • 오버워치그룹모집
  • 포켓몬고
  • 파이널판타지14
  • 배틀그라운드
  • 기타
  • 종교
  • 단어장
  • 자료창고
  • 운영
  • 공지사항
  • 오유운영
  • 게시판신청
  • 보류
  • 임시게시판
  • 메르스
  • 세월호
  • 원전사고
  • 2016리오올림픽
  • 2018평창올림픽
  • 코로나19
  • 2020도쿄올림픽
  • 게시판찾기
  • 게시물ID : humordata_511046
    작성자 : 0.9땡
    추천 : 12/4
    조회수 : 1331
    IP : 59.26.***.17
    댓글 : 7개
    등록시간 : 2009/03/28 15:14:46
    http://todayhumor.com/?humordata_511046 모바일
    0.999... ≠ 1
    디시인사이드에서 '0.9땡 = 0.999... 가 1이 아니다' 혹은 '0.999... < 1이다' 라는 떡밥은 매우 고전적인 떡밥입니다. 검색을 해보면 나름대로 역사를 가지고 있다고 할 만큼 오래되었다는 것을 알 수 있을 것입니다. 계속 거슬러 가보면 과학갤에서 수학갤이 독립되기 전부터 多思郞이란 분이 위의 주장을 전파하고 다녔다는 것을 알 수 있는데, 정말 오래됐다면 오래된 이야기입니다. 물론 0.999... = 1를 주장하며 이 논쟁을 종식시키려는 움직임도 많았습니다만, 0.999...≠1 학파는 얼마 후 새로운 논리를 들고 오거나, 한 논리를 근성으로 밀어붙이는 식의 밀고 당김이 계속됐습니다. 이 글 또한 단순히 그 중 하나 정도가 되겠지만 여러분의 논쟁에 조금이나마 보탬이 되고자 나름 성의껏 작성해 보고자 합니다.




    이 글은 디시인사이드 수학갤러리에서 벌어지고있는 0.999... 논쟁 역사를 정리 및 요약 해 놓은 것입니다. 일단 0.999... < 1를 주장하는 사람들이 0.999... = 1이라는 논리를 직접적으로 반박하는 일은 거의 없으며 그야말로 0.999... < 1 이라는, 0.999... = 1의 논리와는 다소 동떨어진 자신의 논리를 보호하기에 급급합니다. 즉 대부분의 공격방향은 (0.999... = 1)→(0.999... < 1) 방향으로 진행됩니다. 따라서 이 글도 그러한 방향에 입각하여 쓰여질 수밖에 없는 것인데, 후에 판단은 알아서 하시길 바랍니다.







    프로페셔널 수학자 및 아마추어 수학자들의 다수 : 0.999... = 1





    우선 현대 수학에서 0.999...라는 십진법 표기는 정확히 1을 나타내고 있습니다. 신이 0.999...가 1이라고 주장하든 1이 아니라고 주장하든 간에, 어.쨌.든. 현대의 모든 전문 수학자들이 위의 사실을 인정하고 있습니다. 먼저 이들의 이론을 살펴봅시다. 약간은 해석학적 사실인 이것을 최대한 쉽게 설명하기 위해 노력해보겠습니다.




    양쪽이 쓰는 0.999... 는 십진법 표기(그 중에서도 소수 표기)인데, 일단 n진법이란 무엇인지 살펴보아야 하겠습니다. 그러나 이것을 자세히 쓰는 것은 이야기 시작도 전에 스크롤을 최하단으로 내려버리는 사태를 유발하므로 생략하도록 합시다. 대충 십진법이라는게 직관적으로 무엇인지는 아시리라 믿습니다.




    십진법은 실수를 표현하기 위한 한 방법을 말하는 것으로, 임의의 십진법 표기는 항상 어떤 실수의 표현이 됩니다. 여기서 우리가 인정해야 할 사실은 0.999... 가 실수라는 것입니다. [인정1]


    만약 이 사실을 인정하면, 0.999... < 1 이라는 결론은 쉽게 반박이 됩니다. 0.999... < 1이라고 합시다. 그런데 실수는 연속적이므로, 0.999... < x < 1 인 실수 x가 존재합니다. [인정2] (다시 말해, 어떤 실수보다 작은 수 중 가장 큰수 라는건 존재하지 않습니다. 반드시 서로다른 두 실수 사이에는 또다른 실수가 있습니다.)


    그런데 이런 실수 x는 존재하지 않는다는걸 쉽게 알 수 있습니다. 예를들어 1보다 작고 0.9보다 큰 실수를 소수 표현으로 쓰려면 일단은 0.9까지는 쓰고 들어가야합니다. 그래서 0.9235 이런것들이 0.9보다 크고 1보다 작은 숫자의 예가 될 수 있겠습니다. 다시 예를들어, 1보다 작고 0.99보다 큰 실수를 소수 표현으로 쓰려면 적어도 0.99까지는 써야 하겠습니다. 0.999나 0.99024 이런것들을 쓰기 위해서 말입니다. 이제 0.999...보다 크고 1보다 작은 수를 쓰려면, 일단 정수부분은 0이 들어가야할 것인데, 9를 계속 쓸 수는 없는 노릇이고...


    ( (cf) 이 같은 설명을 수학적 형식언어로 쓸 수도 있습니다. 그런데 자칫 잘못하여 약간의 헛점아닌 헛점이 드러나면 낭패를 보게되는데, 예를 들어 이 설명을 할 때 반드시 들어갈 수 밖에 없는 구절 "충분히 큰 n에 대해 명제 p가 성립한다."에 대해 반박론자들은 "누구 맘대로 충분히 큰 n? 내맘대로 n이 충분히 안크다면?" 라고 말할 수도 있습니다. '충분히 큰 자연수 n에 대해'란 말은 "어떤 '일정한' 자연수 N이 존재하여 N보다 큰 모든 자연수 n 대해(∃N ∀n≥N)" 라는 것인데 이런 말 하나하나 쓰기도 번거롭고 0.999... < 1 를 이해하지 못하는 아마추어분들은 이 문장을 이해하기가 더더욱 쉽지않으니 하여튼 진퇴양난인거 같아, 생략합니다.)




    이러한 이유로 0.999... < 1 는 반박되고 0.999... = 1이 성립하게 됩니다. 이 주장을 반박하려면 [인정1]과 [인정2]를 반박해야 할 것입니다. 이제 이런 반박이 가능할 만한 의견을 들어봅시다.




    [[인정1]의 반박]
    0.999... 는 실수가 아니다. 0.999...는 인간이 아직 발견하지 못한 미지의 수 체계에 속하는 수로서, 0.999... 를 굳이 수직선 위에 찍는다면, 어떤 정지해 있는 한 점으로 표현되지 않고, 1보다 작은 쪽에서 계속 1에 다가가고 있는 '움직이는 점'으로 표현된다. 덧붙이면 1.000... 은 1보다 큰 쪽에서 계속 1에 다가가고 있는 점으로 표현된다.

    [[인정2]의 반박]
    0.999...는 1에 도달하기 직전의 실수이다. 그러니까 0.999...는 1보다 작은 실수 중 가장 큰 것이며, 여기에 굉장히 작은 양수 0.000...1를 더하면 1이 된다. 더군다나 0.999...8 < 0.999... < 1 이며 가장 왼쪽 것에 0.000...2를 더하면 1이 된다.





    [[인정1]의 반박]이나 [[인정2]의 반박] 혹은 양쪽 모두를 적절히 혼합하여 주장하는 사람들이 있습니다. 그러나 현대 수학자들은 이들에 대해 다시한번 반박을 합니다.




    [[인정1]의 반박]의 반박]
    그런 상태를 상상할 수는 있다. 그러나 그 존재를 인정하는 것이 무슨 의미가 있는가? 실수 체계만큼 그럴 싸한 수 체계를 구성할 수 있지 못하면 쓸모 없는 개념이다. 더군다나 0.999...가 당신의 말과 같다면 3.141592...라는 표현도 π가 아니라 π의 왼쪽으로 향하는 점을 나타내는 것이어야 하는데, 그렇다면 π의 오른쪽으로 향하는 점은 소수로 어떻게 나타내는가?




    [[인정2]의 반박]의 반박]
    그러면 0.999...1 < 0.999...2 < ... < 0.999...8 < 0.999...9 < 0.999...10 < ... 관계가 성립하는가? 0.999...1과 0.999...10의 차이점은 무엇인가? 0이 끝에 하나 더 달린건가? 그러면 0.1 < 0.10의 관계가 성립하는가?






    개인적인 도움말을 덧붙이자면, 0.999... 는 9가 무한히 뻗어 나가고있는 동적인 상태를 생각하지 말고 9가 굉장히 많이 있긴 하지만 어쨌거나 "딱 떨어진" 정적인 상태를 상상하시는 것이 오히려 적절할 것입니다.


    어쨌든 이쯤 되면 0.999... < 1 를 주장하는 사람들은 버로우 혹은 인신공격을 행사하기 시작합니다. 이 외에도 극한이란 것을 직접적으로 끌어들여 주장하시는 수학도들이 계시는데(무한급수 등을 이용하여) 사실 수학에서 프로페셔널로 가는 가장 큰 관문이 이 극한에 대한 수학적 이해이니 만큼, 토론은 커녕 '상태다, 도달점이다' 하는 끝없는 뻘소리를 야기하니 극한의 수학적 정의를 이해하지 못한 분들은 이 논쟁에서 극한이라는 얘기를 안하셨으면 합니다.

    참고로 수열의 극한의 수학적 정의를 적으면 다음과 같습니다.


    수열 {a_n}⊂lR 의 극한이 L이란 말은 다음과 같이 정의된다.
    : 임의의 양수 ε에 대하여, 어떤 자연수 N이 존재해서 k > N을 만족하는 모든 k가
    l a_k - L l < ε 를 만족하면 lim{n→∞} (a_n) = L 이라 쓰고 수열 {a_n}이 L에 수렴한다고 한다.






    아마추어 수학자 중 일부 : 0.999... < 1




    이제 0.999... < 1 를 주장하는 사람들의 논리와 그에 대한 반박 등을 살펴보고자 합니다.





    [주장1]

    x = 0.999... 라 하자.
    그러면 10x = 9.999...
    두 식을 적당히 빼면 9x = 9
    따라서 x = 1



    이라는 증명은 잘못되었다. 10을 곱할때 9가 하나씩 밀렸으므로 뺄셈을 적용시키면

    9x = 8.999...1 따라서 x = 0.999... 이므로 수사는 원점이다.

    [[주장1]의 반박] 9가 무한히 많기 때문에, 9가 하나 밀린 것을 생각하는 사람은 무한의 본질을 제대로 파악하지 못한 것이다.



    [[[주장1]의 반박]의 반박] 당신이 말하는 무한의 본질이란 무엇이길래 '밀림현상(?)'을 무시하는가?


    사실 유한소수에서 먹히던 사칙연산 방법들을 무한소수에 그대로 먹히게 하기에는 상당히 번거로움이 있기 때문에, 더군다나 위 [주장1]이 0.999... = 1의 증명 중 하나가 잘못되었다는 것이지 0.999... < 1 를 말하는게 아니므로 이같은 주장은 그냥 무시하게 됩니다. 몇몇 0.999... = 1를 주장하는 사람들이 [[주장1]의 반박]을 합니다. 그러나 이 또한 그들 주장의 핵심이 되는 "∞ + 1 = ∞" 이 뭔가 애매한 감이 있으므로(수학에서 실수체계에 ∞와 -∞를 포함시킨 '확장된 실수 체계(extended real number system)'라는게 있긴 하지만 내용이 매력적이지 않아 아마추어 분야로 남아 있습니다.) 결국 [[[주장1]의 반박]의 반박]과 같은 헛소리만 더욱 많이 불러일으키는 결과를 낳습니다.





    [주장2]

    0.999...에서 9의 개수를 n이라 하자.



    n=1 ; 0.9 < 1이다.
    n=k 일때 0.999...9 (9가 k개) < 1 라고 가정하자.
    그러면 0.999...9 (9가 (k+1)개) = 0.999...9 (9가 k개) + (1/10)^(k+1)*9 < 1이다.



    따라서 수학적 귀납법에 따르면 임의의 n에 대해서 0.999... (9가 n개) 는 1보다 작다.

    정리하면 0.999... 의 9의 개수가 뭐든지 간에, 아무리 많아도 1보다 작다.



    [[주장2]의 반박]
    수학적 귀납법은 p(n) (n은 자연수) 이라는 명제를 증명할 때 쓰인다. 즉, 위의 증명대로 임의의 자연수 n에 대하여 0.999... (9가 n개) < 1이 성립하지만, 0.9땡 = 0.999... 에서 9의 개수는(그 개수라는걸 굳이 생각하자면) 무한히 많으므로 임의의 자연수 n보다도 많을 것이다. 즉 0.9땡에서 9의 개수는 자연수가 아니고, 따라서 위의 수학적 귀납법으로 설명할 수 없다.





    [주장3]

    나는 실수가 가부번(countable)임을 증명하였다. 그런데 0.999... = 1를 인정하는 칸토어(G. Cantor)의 실수는 비가부번(uncountable) 증명은 잘못되었다. 따라서 0.999... ≠ 1이다.


    [[주장3]의 반박]
    0.999... ≠ 1 이면 0.999...는 기존의 실수체계에 있지 않던 숫자이고 따라서 0.999... = 1를 인정할때의 실수보다 더욱 그 농도(cardinality)가 짙어져야 할 것인데, 따라서 실수가 가부번이라고 하는 것은 잘못되었다. 또한 실수의 비가부번 증명은 0.999... = 1를 사용하지 않는다.





    [주장4]

    0.999... = 0.9 + 0.09 + 0.009 + ... = 1 의 증명은 잘못되었다.

    아무리 0.00...09 를 더해도 1은 될 수 없기 때문이다.


    [[주장4]의 반박]
    0.999... 는 십진법 전개의 정의에 의해 0.9 + 0.09 + 0.009 + ... 와 같은 무한급수로 정의되고 이는 부분합의 극한, 즉 수열 {0, 0.9, 0.99, 0.999, ...}의 극한으로 정의된다. 따라서 0.999... = 0.9 + 0.09 + 0.009 + ... = 1 이며 위의 주장과 마찬가지로 {0, 0.9, 0.99, 0.999, ... }에 0.999... 는 나타나지 않는다. 다만 0.00...09를 유한번 더한 0.999...9 가 나타날 뿐이다.



    [주장5]
    0.999... = 1 이다.
    그런데 [0.999...] = 0이다.
    (단 [x]는 x보다 크지 않은 최대정수.)

    [[주장5]의 반박]
    0.999... = 1 이므로 대입법에 의해 [0.999...] = [1] = 1.



    [주장6]
    1를 n제곱하면 여전히 1이다.
    그러나 0.9, 0.99, 0.999 등을 n번 제곱하면 점점 1에서 멀어지는 '균열'이 생긴다.
    0.999... 또한 '균열'이 생길 것이다. 따라서 0.999 ≠ 1이다.

    [[주장6]의 반박]
    위 주장을 식으로 표현하면

    lim{m→∞} lim{n→∞} (0.999... (9가 m개) ) ^n
    ≠lim{n→∞} lim{m→∞} (0.999... (9가 m개) ) ^n

    인데 이는 당연한 것이다. 원래 lim의 순서를 바꾸면 결과가 달라질 수 있다.



    [주장7]
    lim{x→1} (x) 를 1이라고 쓰긴 하지만 사실 극한의 정의를 보면 1에 가까워 지는 상태를 나타낸다. 따라서 같은 이유로 0.999... 는 1이 아니다.

    [[주장7]의 반박]
    우선 극한의 정의에 의해 lim{x→1} (x) = 1이니 극한의 개념을 바로 잡기 바란다. 그리고 실수체계에서는 '가까워 지는 상태' 같은 수는 용납하지 않으며 필요에 의해 그런 상태를 상상한다고 하더라도 그 목표점, 즉 극한에만 관심을 둔다.



    제 정리는 여기까지 입니다. 多思郞에서 골벅까지(짤방을 보아 두 사람은 같은사람으로 추정됨.) 정말 많은 이야기들이 있었지만, 모두 직접적이든 간접적이든 위의 리스트에 어느정도 겹치리라 생각됩니다(위의 주장들끼리도 겹치는 내용이 많습니다.).

    개인적으로 저는 어느 한쪽에 끼기는 싫지만, 0.999... < 1를 주장하는 분들은 자신들의 논리가 부족한 만큼 더 많이 준비하고 주장해야 한다는 것을 강조하고 싶습니다. 일단 0.999... < 1은 실수의 십진법 표기 상 성립하지 않는 부등식이니 저런 표현을 인정하려면 십진법의 정의가 수정되어야 함은 물론이거니와 더 넓은 수체계를 구성하여야 할 것입니다. 물론 여기서 수체계라 함은 적어도 1. 표기가 잘 정의되고, 2. 연산이 잘 정의되고, 3. 대소비교가 잘 정의되는 집합이어야 수학자들에게 관심을 끌 수 있을테죠.

    잡필을 여기까지 읽어주셔서 감사합니다. 아마추어 수학자분들이나 고등학생 혹은 중학생 여러분은 항상 참고하도록 합시다.

    이 게시물을 추천한 분들의 목록입니다.
    [1] 2009/03/28 15:19:04  121.200.***.224  춤추는달빛
    [2] 2009/03/28 15:42:43  211.219.***.76  
    [3] 2009/03/28 16:23:43  59.18.***.139  반품된핵폭탄
    [4] 2009/03/28 16:29:48  114.70.***.1  
    [5] 2009/03/28 18:11:11  122.35.***.157  제목학원
    [6] 2009/03/28 18:59:11  121.55.***.22  
    [7] 2009/03/28 19:10:51  58.145.***.101  
    [8] 2009/03/28 19:52:50  211.109.***.86  
    [9] 2009/03/28 21:50:11  211.201.***.145  다복
    [10] 2009/03/28 22:20:35  115.139.***.103  
    푸르딩딩:추천수 3이상 댓글은 배경색이 바뀝니다.
    (단,비공감수가 추천수의 1/3 초과시 해당없음)

    죄송합니다. 댓글 작성은 회원만 가능합니다.

    번호 제 목 이름 날짜 조회 추천
    2028736
    담배 막으면서 혼술은 왜 미화해?박나래 툭하면 술마시더니 나혼산. 라이온맨킹 24/11/19 09:48 121 1
    2028735
    문자 몰라도 알 수 있는 위험 상황 [2] 펌글 감동브레이커 24/11/19 08:13 816 3
    2028734
    [베스트펌] 초보운전 여자 아나운서의 차 상태.jpg 투데이올데이 24/11/19 08:02 773 1
    2028733
    빌리 아일리시를 처음 본 아이들 [1] 펌글 감동브레이커 24/11/19 07:53 1029 7
    2028732
    정체 공개될 위기에 처한 얼굴 없는 화가 '뱅크시' 피카소여물 24/11/19 07:26 1403 0
    2028731
    디자이너들 오줌 지리게 만드는 어도비 [5] 펌글 우가가 24/11/19 00:41 1842 9
    2028730
    다들 배꼽 모양 뭐임? [3] 변비엔당근 24/11/18 23:49 1292 4
    2028729
    어느 웃대인의 김장 클라스 [4] 변비엔당근 24/11/18 23:43 1345 13
    2028728
    훌쩍훌쩍 로봇 메이드와 무인도에서.manhwa [3] 펌글 우가가 24/11/18 23:08 935 8
    2028727
    펌) 아빠가 갑자기 나 부르더니 PPT 발표함 [7] 펌글 우가가 24/11/18 22:56 1412 6
    2028726
    삼수한 여돌 ㅈㄴ 긁는 문상훈.mp4 펌글 우가가 24/11/18 22:54 1586 4
    2028725
    백종원이 최고 술안주로 꼽는 음식 ㄷㄷ.jpg [3] 펌글 우가가 24/11/18 22:53 2164 7
    2028724
    우크라이나 외교 실책 추가.jpg [4] 펌글 우가가 24/11/18 22:52 1492 7
    2028723
    큰 벌레에 난리난 알바생들.mp4 [3] 펌글 우가가 24/11/18 22:44 1526 9
    2028722
    근황이 궁금한 할머니.jpg 펌글 우가가 24/11/18 22:41 1627 5
    2028721
    미국 역사상 가장 황당한 비행기 납치 사건 [1] 펌글 우가가 24/11/18 22:38 1447 7
    2028720
    싱글벙글 내셔널지오그래픽 [5] 펌글 우가가 24/11/18 22:32 1517 12
    2028719
    약국 타짜 [4] 등대지기™ 24/11/18 22:29 1335 10
    2028718
    의자는 대체 언제 쉬는걸까?.manhwa [4] 펌글 우가가 24/11/18 22:28 935 6
    2028717
    동생이 수능 안 봤다는걸 이제야 안 오빠 [1] 펌글 우가가 24/11/18 22:26 1707 7
    2028716
    권오중 최신 근황.jpg 펌글 우가가 24/11/18 22:23 1750 7
    2028715
    자연친화적 식기세척기 [3] 댓글러버 24/11/18 21:20 2299 9
    2028714
    냉혹한 한국의 독특한 식문화...육회의 세계...jpg [8] 펌글 우가가 24/11/18 20:02 2445 8
    2028713
    댐에서 절대 수영하면 안 되는 이유 [9] 펌글 우가가 24/11/18 19:56 5237 10
    2028712
    그냥 공감해줘.jpg [4] 펌글 우가가 24/11/18 19:52 1287 6
    2028711
    약혐) 요도확장술 [6] 펌글 우가가 24/11/18 19:49 2455 10
    2028710
    일본 방송의 한국 설렁탕 리뷰 [1] 펌글 우가가 24/11/18 19:44 1683 10
    2028709
    스파이더맨을 보던 어린 시절 vs 지금 [4] 펌글 우가가 24/11/18 19:33 1403 6
    2028708
    모기에게도 유행인 제로음료 열풍.gif [1] 펌글 우가가 24/11/18 19:30 1816 6
    2028707
    한 카센터에 입고된 차량 고장 유형.jpg [3] 펌글 우가가 24/11/18 19:28 2171 11
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [다음10개▶]
    단축키 운영진에게 바란다(삭제요청/제안) 운영게 게시판신청 자료창고 보류 개인정보취급방침 청소년보호정책 모바일홈