모바일 오유 바로가기
http://m.todayhumor.co.kr
분류 게시판
베스트
  • 베스트오브베스트
  • 베스트
  • 오늘의베스트
  • 유머
  • 유머자료
  • 유머글
  • 이야기
  • 자유
  • 고민
  • 연애
  • 결혼생활
  • 좋은글
  • 자랑
  • 공포
  • 멘붕
  • 사이다
  • 군대
  • 밀리터리
  • 미스터리
  • 술한잔
  • 오늘있잖아요
  • 투표인증
  • 새해
  • 이슈
  • 시사
  • 시사아카이브
  • 사회면
  • 사건사고
  • 생활
  • 패션
  • 패션착샷
  • 아동패션착샷
  • 뷰티
  • 인테리어
  • DIY
  • 요리
  • 커피&차
  • 육아
  • 법률
  • 동물
  • 지식
  • 취업정보
  • 식물
  • 다이어트
  • 의료
  • 영어
  • 맛집
  • 추천사이트
  • 해외직구
  • 취미
  • 사진
  • 사진강좌
  • 카메라
  • 만화
  • 애니메이션
  • 포니
  • 자전거
  • 자동차
  • 여행
  • 바이크
  • 민물낚시
  • 바다낚시
  • 장난감
  • 그림판
  • 학술
  • 경제
  • 역사
  • 예술
  • 과학
  • 철학
  • 심리학
  • 방송연예
  • 연예
  • 음악
  • 음악찾기
  • 악기
  • 음향기기
  • 영화
  • 다큐멘터리
  • 국내드라마
  • 해외드라마
  • 예능
  • 팟케스트
  • 방송프로그램
  • 무한도전
  • 더지니어스
  • 개그콘서트
  • 런닝맨
  • 나가수
  • 디지털
  • 컴퓨터
  • 프로그래머
  • IT
  • 안티바이러스
  • 애플
  • 안드로이드
  • 스마트폰
  • 윈도우폰
  • 심비안
  • 스포츠
  • 스포츠
  • 축구
  • 야구
  • 농구
  • 바둑
  • 야구팀
  • 삼성
  • 두산
  • NC
  • 넥센
  • 한화
  • SK
  • 기아
  • 롯데
  • LG
  • KT
  • 메이저리그
  • 일본프로야구리그
  • 게임1
  • 플래시게임
  • 게임토론방
  • 엑스박스
  • 플레이스테이션
  • 닌텐도
  • 모바일게임
  • 게임2
  • 던전앤파이터
  • 마비노기
  • 마비노기영웅전
  • 하스스톤
  • 히어로즈오브더스톰
  • gta5
  • 디아블로
  • 디아블로2
  • 피파온라인2
  • 피파온라인3
  • 워크래프트
  • 월드오브워크래프트
  • 밀리언아서
  • 월드오브탱크
  • 블레이드앤소울
  • 검은사막
  • 스타크래프트
  • 스타크래프트2
  • 베틀필드3
  • 마인크래프트
  • 데이즈
  • 문명
  • 서든어택
  • 테라
  • 아이온
  • 심시티5
  • 프리스타일풋볼
  • 스페셜포스
  • 사이퍼즈
  • 도타2
  • 메이플스토리1
  • 메이플스토리2
  • 오버워치
  • 오버워치그룹모집
  • 포켓몬고
  • 파이널판타지14
  • 배틀그라운드
  • 기타
  • 종교
  • 단어장
  • 자료창고
  • 운영
  • 공지사항
  • 오유운영
  • 게시판신청
  • 보류
  • 임시게시판
  • 메르스
  • 세월호
  • 원전사고
  • 2016리오올림픽
  • 2018평창올림픽
  • 코로나19
  • 2020도쿄올림픽
  • 게시판찾기
  • 오유인페이지
    개인차단 상태
    plauncher님의
    개인페이지입니다
    가입 : 10-01-21
    방문 : 24회
    닉네임변경 이력
    회원차단
    회원차단해제
     

    plauncher님의 댓글입니다.
    번호 제목 댓글날짜 추천/비공감 삭제
    16 오징어 다리를 구으면 오그라드는 이유는? [새창] 2010-03-20 13:49:31 0 삭제
    삼그라들면 어떻게 될까요?↓
    15 오징어 다리를 구으면 오그라드는 이유는? [새창] 2010-03-20 13:49:31 0 삭제
    삼그라들면 어떻게 될까요?↓
    14 과학의 꽃은 물리학이죠! [새창] 2010-03-20 13:41:26 1 삭제
    가속기에서 블랙홀 만들긔!
    13 직각삼각형빗변길이에관하여... [새창] 2010-03-20 13:34:32 2 삭제
    A라는 대상의 값을 알 때, B라는 대상의 값을

    극한을 이용해서 A=B다로 구할 때는

    아주 미세한 영역을 보았을 때,

    A와 B가 얼마나 닮겠느냐를 확인하는 것이 중요하다고 생각합니다.

    윗분이 예를 드신 것처럼 원주의 길이를 내접하는 정n각형의 변의 길이합으로 구할 때는

    원의 아주 작은 부분을 보면

    원의 호가 거의 직선의 형태를 띄기에

    원의 호와 정n각형의 변의 길이와 같다고 놓을 수 있겠지만,

    직각삼각형의 빗변의 길이와 '가로길이+세로길이'의 경우에는

    빗변의 아주 작은 부분만을 보더라도

    빗변의 길이와 '가로길이+세로길이'사이에 엄연히 차이가 존재하기 때문에

    극한을 통해서 문제를 해결하지 못하는 것 같습니다.


    식으로 표현하자면, 아주 작은부분의 값을 a,b로 놓았을 때,

    원의 호와 정n각형 변의 길이의 경우는 a/b의 값이 1에 근접해서

    A=B로 둘 수 있겠지만,

    직각삼각형의 경우 a/b가 1과는 좀 떨어진 값이기에 A=B로 둘 수 없는게

    아닌가 싶습니다.



    12 우와 이 형 두산 김현수 닮았다.jpg [새창] 2010-02-08 13:30:18 0 삭제
    선뚱+기멘수 인 듯
    11 나 프랑스 먹은거 인증.jpg [새창] 2010-02-08 13:23:52 2 삭제
    유정천// 싸이허셐ㅋㅋㅋㅋㅋ
    10 나 프랑스 먹은거 인증.jpg [새창] 2010-02-08 13:23:52 6 삭제
    유정천// 싸이허셐ㅋㅋㅋㅋㅋ
    9 나 프랑스 먹은거 인증.jpg [새창] 2010-02-08 13:23:21 19 삭제
    111 후손 ㄴㄴ => 조상
    8 나 프랑스 먹은거 인증.jpg [새창] 2010-02-08 13:23:21 46 삭제
    111 후손 ㄴㄴ => 조상
    7 김현철 PD공책 모음 [새창] 2010-02-06 17:51:52 0 삭제
    나도 웃음 포인트 찾기 되게 힘들던데 ㅋ 뭐 취향차인가 봐요
    6 김현철 PD공책 모음 [새창] 2010-02-06 17:51:52 15 삭제
    나도 웃음 포인트 찾기 되게 힘들던데 ㅋ 뭐 취향차인가 봐요
    5 왼손천사 혜진씨의 도전 ( bgm유재석) [새창] 2010-02-05 11:26:26 12 삭제
    추천 꾸욱 누르고 갑니다 ㅋ 진짜 사지멀쩡한 병신인 내 자신을 돌아보게 되네요 ㅎ;;
    4 왼손천사 혜진씨의 도전 ( bgm유재석) [새창] 2010-02-05 11:26:26 17 삭제
    추천 꾸욱 누르고 갑니다 ㅋ 진짜 사지멀쩡한 병신인 내 자신을 돌아보게 되네요 ㅎ;;
    3 오유에서 실제로 만나보신분 있으신가요? 올 3월 결혼합니다^^ [새창] 2010-02-05 09:59:19 0 삭제
    추천하나 날리고 가여 ㅋ
    2 서울예대 나빠요 ㅠ [새창] 2010-01-29 18:01:14 2 삭제
    저도 방금 같이 처지 됐네요 ㅠㅠ

    토닥토닥



    [1] [2] [3]

     
    단축키 운영진에게 바란다(삭제요청/제안) 운영게 게시판신청 자료창고 보류 개인정보취급방침 청소년보호정책 모바일홈