베오베
베스트
베스트30
최신글
게시판 즐겨찾기
편집
드래그 앤 드롭으로
즐겨찾기 아이콘 위치 수정이 가능합니다.
소수의 개수가 무한함을 수식 한 줄로 증명하는 법
게시물ID :
science_66424
짧은주소 복사하기
작성자 :
증명의나락
추천 :
11
조회수 :
1356회
댓글수 :
26개
등록시간 :
2017/11/29 22:00:35
소수가 유한할 때 모든 소수의 곱을 Q라고 하면...
마지막 식에서, 소수가 유한집합이라면 1+2Q는 최소한 한 개 이상의 소수로 나누어떨어질 수밖에 없다. 즉 sin kπ꼴로 변환 가능하며 이는 0.
모순이 생기므로 소수는 무한.
이 식 발견한 사람은 좀 천재인듯.
꼬릿말 보기
비공감 사유를 적어주세요.
(댓글 형식으로 추가되며, 삭제가 불가능합니다)
전체 추천리스트 보기
이 게시물을 추천한 분들의 목록입니다.
댓글 분란 또는 분쟁 때문에
전체 댓글이 블라인드 처리되었습니다.
새로운 댓글이 없습니다.
새로운 댓글 확인하기
글쓰기
리스트 페이지로
◀뒤로가기
PC버전
맨위로▲
공지
운영
자료창고
청소년보호