모바일 오유 바로가기
http://m.todayhumor.co.kr
분류 게시판
베스트
  • 베스트오브베스트
  • 베스트
  • 오늘의베스트
  • 유머
  • 유머자료
  • 유머글
  • 이야기
  • 자유
  • 고민
  • 연애
  • 결혼생활
  • 좋은글
  • 자랑
  • 공포
  • 멘붕
  • 사이다
  • 군대
  • 밀리터리
  • 미스터리
  • 술한잔
  • 오늘있잖아요
  • 투표인증
  • 새해
  • 이슈
  • 시사
  • 시사아카이브
  • 사회면
  • 사건사고
  • 생활
  • 패션
  • 패션착샷
  • 아동패션착샷
  • 뷰티
  • 인테리어
  • DIY
  • 요리
  • 커피&차
  • 육아
  • 법률
  • 동물
  • 지식
  • 취업정보
  • 식물
  • 다이어트
  • 의료
  • 영어
  • 맛집
  • 추천사이트
  • 해외직구
  • 취미
  • 사진
  • 사진강좌
  • 카메라
  • 만화
  • 애니메이션
  • 포니
  • 자전거
  • 자동차
  • 여행
  • 바이크
  • 민물낚시
  • 바다낚시
  • 장난감
  • 그림판
  • 학술
  • 경제
  • 역사
  • 예술
  • 과학
  • 철학
  • 심리학
  • 방송연예
  • 연예
  • 음악
  • 음악찾기
  • 악기
  • 음향기기
  • 영화
  • 다큐멘터리
  • 국내드라마
  • 해외드라마
  • 예능
  • 팟케스트
  • 방송프로그램
  • 무한도전
  • 더지니어스
  • 개그콘서트
  • 런닝맨
  • 나가수
  • 디지털
  • 컴퓨터
  • 프로그래머
  • IT
  • 안티바이러스
  • 애플
  • 안드로이드
  • 스마트폰
  • 윈도우폰
  • 심비안
  • 스포츠
  • 스포츠
  • 축구
  • 야구
  • 농구
  • 바둑
  • 야구팀
  • 삼성
  • 두산
  • NC
  • 넥센
  • 한화
  • SK
  • 기아
  • 롯데
  • LG
  • KT
  • 메이저리그
  • 일본프로야구리그
  • 게임1
  • 플래시게임
  • 게임토론방
  • 엑스박스
  • 플레이스테이션
  • 닌텐도
  • 모바일게임
  • 게임2
  • 던전앤파이터
  • 마비노기
  • 마비노기영웅전
  • 하스스톤
  • 히어로즈오브더스톰
  • gta5
  • 디아블로
  • 디아블로2
  • 피파온라인2
  • 피파온라인3
  • 워크래프트
  • 월드오브워크래프트
  • 밀리언아서
  • 월드오브탱크
  • 블레이드앤소울
  • 검은사막
  • 스타크래프트
  • 스타크래프트2
  • 베틀필드3
  • 마인크래프트
  • 데이즈
  • 문명
  • 서든어택
  • 테라
  • 아이온
  • 심시티5
  • 프리스타일풋볼
  • 스페셜포스
  • 사이퍼즈
  • 도타2
  • 메이플스토리1
  • 메이플스토리2
  • 오버워치
  • 오버워치그룹모집
  • 포켓몬고
  • 파이널판타지14
  • 배틀그라운드
  • 기타
  • 종교
  • 단어장
  • 자료창고
  • 운영
  • 공지사항
  • 오유운영
  • 게시판신청
  • 보류
  • 임시게시판
  • 메르스
  • 세월호
  • 원전사고
  • 2016리오올림픽
  • 2018평창올림픽
  • 코로나19
  • 2020도쿄올림픽
  • 게시판찾기
  • 게시물ID : science_67694
    작성자 : 힘센과자
    추천 : 3
    조회수 : 1736
    IP : 121.130.***.140
    댓글 : 5개
    등록시간 : 2018/10/29 19:13:33
    http://todayhumor.com/?science_67694 모바일
    [수학의 부스러기] 8. 리만가설
    리만가설 소개에 관한 글입니다.

    리만(Bernhard Riemann)은 1859년 한가지 추측을 했고, 이것을 현대에 리만가설이라고 부르고 있습니다. 이 가설에 내재된 여러가지 중요성이 있습니다만, 그 중 가장 주목받는 점 중 하나는 소수분포와 관련이 있다는 것입니다.

    소수 분포를 알아내기 위해 다음과 같이 간단한 함수를 하나 정의하겠습니다.

    \displaystyle \pi (n) = \textrm{(the number of prime numbers less then n)}

    즉 정수집합에서 자연수집합으로 가는 함수 π는, n보다 작은 소수들의 개수를 뱉어내는 함수입니다.

    따라서 π가 어떻게 생겼는지를 알아내는 것이 곧 소수분포를 알아내는 것이 되겠습니다.

    한편 "Prime number theorem(소수정리)"이라고 부르는 오래된 정리가 있습니다. π의 형태에 관한 정리입니다. 이 정리는 후에 몇 번의 refinement를 거쳤는데, 가장 유용한 버전은 아래와 같습니다.

    \displaystyle \lim_{n\rightarrow \infty}{\frac{\pi(n)}{ \int^{n}_{2} {\frac{1}{\log (x)} \textrm{d}x}}}=1

    이제 \displaystyle \textrm{Li}(n) = \int^{n}_{2} {\frac{1}{\log (x)} \textrm{d}x}라고 편의상 줄여 쓰겠습니다. 그리고 위의 식을, 아래와 같이 간편히 쓰기도 합니다.

    Prime number theorem : \displaystyle \pi(n) \sim \textrm{Li}(n) (Hadamard & de la Vallee Poussin(1896))

    즉 소수 개수가 증가하는 속도와, 다소 "예쁘게 생긴 함수" Li가 증가하는 속도가 비슷하다는 것입니다.

    한편 아래와 같은 사실은 고등학교 수학에서 잘 알려진 사실입니다.

    \displaystyle \lim_{n\rightarrow \infty}{[(n^{2}) - (n^{2}+n)]} = -\infty임에도 불구하고 \displaystyle \lim_{n\rightarrow \infty}{\frac{n^{2}}{n^{2}+n}} = 1

    따라서 π가 증가하는 속도 자체보다도, 이제 Li가 π를 "얼마나 잘 근사하는지" 궁금해 하는 것은 자연스러운 물음이 됩니다. 몇몇 수학자들은 π(n)-Li(n)에 대해 조사하기 시작했습니다.

    이제 서술의 편의를 위해, 약간의 간단한 계산을 거쳐 Prime number theorem을 아래와 같이 변형하겠습니다.

    \displaystyle \pi(n) \sim \textrm{Li}(n) \Longleftrightarrow \psi (n) \sim n

    (여기서 \displaystyle \psi(n) = \sum_{p^k < n}{\log(p)}이고 2nd Chebyshev function라고 부릅니다.)
    π(n)-Li(n) 대신 ψ(n) - n을 살펴보아도 되겠습니다.

    ■ ψ(n) - n 에 대해 알려진 것들
    \displaystyle o(n) (1896)
    \displaystyle O(n e^{-c \sqrt{\log(n)}}) (1899)
    \displaystyle O(n e^{-c \frac{\log(n) ^{3/5}}{\log(\log(n))^{1/5}}}) (-_-;; 1958)

    ■ Riemann hypothesis : \displaystyle O(n^{1/2 + \epsilon}) \textrm{ for any }\epsilon>0 (the best of the best error term)

    결국 '리만가설'이란, "예쁜함수(Li)"가 소수분포를 얼마나 잘 보여주느냐에 대한 것입니다.

    사실, 리만가설은 리만제타함수(Riemann zeta function)으로 대중에게 더 잘 소개되고, Riemann의 original paper에도 그렇습니다.
    일반적인 Riemann zeta function의 construction은 아래와 같습니다.

    ζ : C(the set of complex numbers) → C
    1) s∈C with Re(s)>1에 대하여, \displaystyle \zeta(s) = \sum_{n=1}^{\infty}{\frac{1}{n^s}}라고 정의한다.
    2) Otherwise, 위 ζ의 analytic continuation을 생각한다.

    이러면 ζ는 s≠1에 대해 잘 정의되는, C 위의 (meromorphic) function임을 확인할 수 있습니다.

    ζ(s) = 0이 되는 s를 "ζ의 zero"라고 부릅니다. 비교적 어렵지 않은 계산을 통해, s=-2, -4, -6, ...이 ζ의 zero임을 알 수 있습니다.
    이 negative even을 ζ의 trivial zero라고 부릅니다.

    한편 ζ는 위의 negative even 말고도 무수히 많은 다른 zero들을 가지는데, 이를 ζ의 nontrivial zero라고 합니다.
    이 nontrivial zero들은 전부(!) 0<Re(s)<1(called 'critical strip')에 깔려있으며 Re(s)=1/2와 Im(s)=0에 대칭임이 알려져있습니다.
    아래 그림을 보시면 이해가 쉬우실 겁니다.

    riemann hypothesis zero critical strip에 대한 이미지 검색결과



    한편 저 nontrivial zero s들이 \displaystyle \textrm{Re}(s) \in \Biggl[ \frac{1}{2}-a, \frac{1}{2}+a \Biggr]에만 깔려있다면(즉 더 좁은 strip에만 있다면),
    아까의 Li(n)의 approximation이 \displaystyle O(n^{1/2 +a+ \epsilon}) \textrm{ for any }\epsilon>0라는, 다소 충격적인 사실이 또한 알려져있습니다.

    간단히 말해, 저 점들이 "좁게" 분포하면 분포할수록 Li는 소수 분포를 더 잘 근사한다는 것입니다.


    저 점들을 가장 좁게 분포시키려면...

    ■ Riemann hypothesis (the original) : ζ의 nontrivial zero는 전부(!) Re(s)=1/2에 깔려있다.

    이러한 sense에서, 리만가설은 Li의 square root error가 best라고 말할 수 있겠습니다.



    아래는 리만가설 관련한 몇가지 어그로에 대한 답입니다.

    1. ζ와 π가 대체 어떻게 connect되어있는지?
    : Euler product라고 불리우는
    \displaystyle \zeta(s) = \prod_{p}{(1-p^{-s})^{-1}}을 이용하면, ζ와 prime number가 연관되고, further calculation을 통해 prime number theorem과 연관시킬 수 있음.

    2. \displaystyle \zeta(-1) = 1+2+3+... = - \frac{1}{12}???
    : 중간의 무한급수 표현은 통상 쓰는 partial sum의 limit이 아님. Riemann zeta function 정의를 고려할 때, analytic continuation으로 확장한 domain에서도 이러한 더하기 표기 하면 멋있으니 그냥 차용해서 쓴 것임.

    3. 리만가설이 풀리면 현대 암호체계 폭망?
    : O(x^(1/2))라고 망하진 않는다고 생각함. 이에 대해서는 자세히 공부 안해봐서 정확한 이유는 모르겠음...
    리만가설을 푸는 것에서 얻는 것은 mathematical beauty 및 증명에 쓰인 아이디어와 통찰력이라고 생각함.

    4. 아티야가 푼게 맞냐?
    : 아닐 가능성이 매우매우매우 높음.

    5. 지금까지 증거가 없으면 귀납적?으로 거의 리만가설 맞다고 볼 수 있냐
    : 리만가설과 상당히 관련이 있는, "거의 맞지만 아닌" 예를 아래 소개하겠음.
    위의 논의에서 π를 Li가 근사한다고 했는데, 그 그래프는 아래와 같음.

    PrimePi

    위의 그래프에서 검은선(=Li)이 파란선(=π)보다 항상 위에 있는가? 즉 항상 Li > π인가?
    이에 대해 몇가지 알려진 사실은,

    1) Li(n) < π(n) 인 n은 무수히 많음 (1914, John Edensor Littlewood)
    2) Li(n) < π(n) 인 n은 10^(10^(10^964)) 이하에는 존재함 (1955, Stanley Skewes)
     (이 사람의 이름을 따 Li(n) < π(n)인 n을 Skewes number라고 부름)
    2') Li(n) < π(n)인 n은 1.39716 x 10^316 이하에는 존재함 (2011, Stoll & Demichel)
    3) 컴퓨터로 2015년까지 노가다 해보니 n=1~10^19에 대해 Li(n) > π(n)

    존재성은 증명이 되는데 대체 어디있는지 아직도 못찾았음...

    이 게시물을 추천한 분들의 목록입니다.
    [1] 2018/10/29 20:54:36  59.151.***.55  증명의나락  473011
    [2] 2018/10/30 08:40:59  114.199.***.69  고소당한두유  116492
    [3] 2018/10/30 15:45:58  110.47.***.251  Young.K  25347
    푸르딩딩:추천수 3이상 댓글은 배경색이 바뀝니다.
    (단,비공감수가 추천수의 1/3 초과시 해당없음)

    죄송합니다. 댓글 작성은 회원만 가능합니다.

    번호 제 목 이름 날짜 조회 추천
    68873
    식기들 끓는물 소독 & 다시 흐르는 물에 씻기 [2] 눙물이눙물이 24/11/22 12:29 458 2
    68872
    질문? 대기권 재진입 내열타일 실험할 때 산소도 공급하나요? [3] Young.K 24/11/21 15:31 267 2
    68871
    현직 물리학 교수가 올린 수학 잘하는 법 [3] 제임스Bond 24/11/20 18:04 559 1
    68870
    아인슈타인도 예측하지 못했던 천체현상의 발견 [3] ㅗㅠㅑ 24/11/11 16:43 817 3
    68869
    수십1년간 묵혀졌던 궁금증이 ChatGPT를 통해 해소 됐습니다. [2] ㅗㅠㅑ 24/11/10 22:56 935 2
    68868
    0.9999.... = 1 그럼 ....999999999 는??? [4] Young.K 24/11/08 14:47 778 3
    68866
    이 덩치큰녀석 언제 다 올렸지 신기하다 [3] dogcat 24/11/05 16:11 860 2
    68865
    우리가 사는 세상이 가상현실이라는 증거 [1] ㅗㅠㅑ 24/11/05 13:26 745 3
    68864
    대기 중 CO2 획기적 제거 신물질 'COF-999' 개발 "눈길" [5] 펌글 우가가 24/11/04 00:01 879 3
    68863
    김범준 교수님이 했던 기억에 남는말, 물질이 빛보다 빠를 수 없는 이유 [2] Oh_My!_Girl 24/10/29 16:57 1059 2
    68861
    귀신(?)에 대한 공포는 사람이 아닌 다른 동물들도 마찬가지인걸까요? [2] Oh_My!_Girl 24/10/28 11:29 961 2
    68856
    물리학에서 질량은 우주어디에서나 변함없이 같다 .특수상대성이론은 [4] dogcat 24/10/21 20:41 1017 0
    68855
    우주의 크기는 대략 140억광년이다. [6] dogcat 24/10/21 20:03 1294 2
    68854
    블랙홀과 열역학 [4] 달음 24/10/17 00:24 1350 0
    68853
    음식무게와 살찌는 체중증가의 관계? [6] 리버풀7 24/10/16 20:57 1125 0
    68852
    [도움] 수학문제 풀이가능하신분 ! [5] 유전자몰빵 24/10/09 17:06 1247 0
    68851
    [잡설] 양자얽힘과 초공간과 암흑물질과. [2] Young.K 24/10/01 22:39 1374 0
    68850
    음악 자주 듣는 분들 과학적 꿀팁 [2] 사나이직각 24/09/28 22:49 1569 2
    68848
    등가원리가 맞다면, 가속도 운동도 시공간휨을 발생시키는가? [2] 본인삭제금지 arevo 24/09/22 01:00 1548 1
    68847
    폴라리스 던. 극궤도 유인 탐사 1400km 돌파! +EVA [1] 펌글 Young.K 24/09/11 17:45 1507 0
    68846
    무한히 작은 확률을 31%까지 끌어올리는 방법 [2] 펌글 우가가 24/09/04 23:14 2142 5
    68845
    [소식] 스타라이너 스피커에서 나는 소리가 해결되었다고 합니다. [2] Young.K 24/09/02 11:04 1844 1
    68844
    [펌] 시카노코노코노코 Young.K 24/08/31 17:16 1668 1
    68843
    프리 노벨상 인체물리학 24/08/30 10:39 1671 0
    68842
    안녕하세요 오랜만에 질문드리네요! 삼차함수 미분문제 풀어주실분 계실까요? [2] 창작글본인삭제금지 난선생너학생 24/08/29 14:39 1643 1
    68841
    [펌] 팰컨9 B1062 부스터가 착륙에 실패하여 파괴되었습니다(추가3) [2] Young.K 24/08/29 00:52 1827 1
    68840
    [펌] 스타라이너 승무원들은 Crew-9으로 복귀합니다. [4] Young.K 24/08/25 04:07 2031 1
    68839
    비행기가 뜨는 양력 이론 쉽게 이해 하기. [11] 나비의아이 24/08/14 06:50 2362 3
    68838
    슈퍼컴퓨터로 지진운의 과학적 입증? [6] 나비의아이 24/08/14 04:52 2211 0
    68837
    [펌] 보잉 스타라이너 CST-100 승무원 대체 귀환 고려 중. [6] 펌글 Young.K 24/08/08 18:33 2141 1
    [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [다음10개▶]
    단축키 운영진에게 바란다(삭제요청/제안) 운영게 게시판신청 자료창고 보류 개인정보취급방침 청소년보호정책 모바일홈